Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 276: 116293, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599155

RESUMO

Elevated concentrations of As, Cr, Cu, Ni, Pb, V and Zn in topsoils in Belfast, Northern Ireland have been found to exceed assessment criteria in the city and therefore may pose a risk to human health. Most generic assessment criteria (GAC) for potentially toxic elements (PTEs) in soils assume PTEs are 100% bioavailable to humans. Here we use in-vitro oral bioaccessibility testing using the Unified BARGE method (UBM) to measure what proportion of soil contamination dissolves in the digestive tract and therefore is available for absorption by the body. This study considers how PTE bioaccessibility in soils varies spatially across urban areas and refines human health risk assessment for these PTEs using site specific oral bioaccessibility results to present the first regional assessment of risk that incorporates bioaccessibility testing. A total of 103 urban soil samples were selected for UBM testing. Results showed low bioaccessible fraction (BAF) for the PTEs from geogenic sources: Cr (0.45-5.9%), Ni (1.1-46.3%) and V (2.2-23.9%). Higher BAF values were registered for PTEs from anthropogenic sources: As (8.0-86.9%), Cu (3.4-67.8%), Pb (9.1-106.2%) and Zn (2.4-77.5%). Graphs of bioaccessibility adjusted assessment criteria (BAAC) were derived for each urban land use type and PTE. These provide a visual representation of the significance of oral bioaccessibility when deriving BAAC and how this is affected by 1) dominant exposure pathways for each land use and 2) relative harm posed from exposure to PTEs via each pathway, allowing oral bioaccessibility research to be targeted to contaminants and pathways that most significantly impact risk assessment. Pb was the most widespread contaminant with 16.5% of sites exceeding the Pb GAC. Applying BAAC did not significantly change risk evaluation for these samples as many had Pb BAF>50%. In contrast, all samples that exceeded the As GAC were found to no longer exceed a minimal level of risk when oral bioaccessibility was considered. Oral bioaccessibility testing resulted in a 45% reduction in the number of sites identified as posing a potential risk to human health.


Assuntos
Disponibilidade Biológica , Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Medição de Risco , Poluentes do Solo/análise , Irlanda do Norte , Humanos , Monitoramento Ambiental/métodos , Metais Pesados/análise , Cidades , Solo/química
2.
Environ Geochem Health ; 43(7): 2597-2614, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32583129

RESUMO

Chronic kidney disease (CKD), a collective term for many causes of progressive renal failure, is increasing worldwide due to ageing, obesity and diabetes. However, these factors cannot explain the many environmental clusters of renal disease that are known to occur globally. This study uses data from the UK Renal Registry (UKRR) including CKD of uncertain aetiology (CKDu) to investigate environmental factors in Belfast, UK. Urbanisation has been reported to have an increasing impact on soils. Using an urban soil geochemistry database of elemental concentrations of potentially toxic elements (PTEs), we investigated the association of the standardised incidence rates (SIRs) of both CKD and CKD of uncertain aetiology (CKDu) with environmental factors (PTEs), controlling for social deprivation. A compositional data analysis approach was used through balances (a special class of log contrasts) to identify elemental balances associated with CKDu. A statistically significant relationship was observed between CKD with the social deprivation measures of employment, income and education (significance levels of 0.001, 0.01 and 0.001, respectively), which have been used as a proxy for socio-economic factors such as smoking. Using three alternative regression methods (linear, generalised linear and Tweedie models), the elemental balances of Cr/Ni and As/Mo were found to produce the largest correlation with CKDu. Geogenic and atmospheric pollution deposition, traffic and brake wear emissions have been cited as sources for these PTEs which have been linked to kidney damage. This research, thus, sheds light on the increasing global burden of CKD and, in particular, the environmental and anthropogenic factors that may be linked to CKDu, particularly environmental PTEs linked to urbanisation.


Assuntos
Poluição Ambiental/análise , Insuficiência Renal Crônica/epidemiologia , Poluentes do Solo/análise , Urbanização , Adolescente , Adulto , Idoso , Humanos , Incidência , Pessoa de Meia-Idade , Solo/química , Reino Unido , Adulto Jovem
3.
Environ Pollut ; 220(Pt B): 1036-1049, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27876415

RESUMO

Increasing urbanisation has a direct impact on soil quality, resulting in elevated concentrations of potentially toxic elements (PTEs) in soils. This research aims to assess if soil PTE concentrations can be used as an 'urbanisation tracer' by investigating geogenic and anthropogenic source contributions and controls, and considering PTE enrichment across historical urban development zones. The UK cities of Belfast and Sheffield are chosen as study areas, where available shallow and deep concentrations of PTEs in soil are compared to identify geogenic and anthropogenic contributions to PTEs. Cluster analysis and principal component analysis are used to elucidate the main controls over PTE concentrations. Pollution indices indicate that different periods of historical development are linked to enrichment of different PTEs. Urban subdomains are identified and background values calculated using various methodologies and compared to generic site assessment criteria. Exceedances for a number of the PTEs considered suggest a potential human health risk could be posed across subdomains of both Belfast and Sheffield. This research suggests that airborne diffuse contamination from often historical sources such as traffic, domestic combustion and industrial processes contribute greatly to soil contamination within urban environments. The relationship between historical development and differing PTEs is a novel finding, suggesting that PTEs have the potential for use as 'urbanisation tracers'. The investigative methodology employed has potential applications for decision makers, urban planners, regulators and developers of urban areas.


Assuntos
Cidades , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Poluentes do Solo/química , Solo/química , Urbanização/tendências , Inglaterra , Humanos , Indústrias , Irlanda do Norte , Análise de Componente Principal , Fatores de Tempo
4.
Environ Sci Pollut Res Int ; 22(8): 6364-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25712881

RESUMO

Inductively coupled plasma (ICP) following aqua regia digestion and X-ray fluorescence (XRF) are both geochemical techniques used to determine 'total' concentrations of elements in soil. The aim of this study is to compare these techniques, identify elements for which inconsistencies occur and investigate why they arise. A study area (∼14,000 km(2)) with a variety of total concentration controls and a large geochemical dataset (n = 7950) was selected. Principal component analysis determined underlying variance in a dataset composed of both geogenic and anthropogenic elements. Where inconsistencies between the techniques were identified, further numerical and spatial analysis was completed. The techniques are more consistent for elements of geogenic sources and lead, whereas other elements of anthropogenic sources show less consistency within rural samples. XRF is affected by sample matrix, while the form of element affects ICP concentrations. Depending on their use in environmental studies, different outcomes would be expected from the techniques employed, suggesting the choice of analytical technique for geochemical analyses may be more critical than realised.


Assuntos
Monitoramento Ambiental/métodos , Poluentes do Solo/química , Solo/química , Espectrometria por Raios X , Espectrofotometria Atômica
5.
Environ Pollut ; 198: 161-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25603155

RESUMO

Lead (Pb) is a non-threshold toxin capable of inducing toxic effects at any blood level but availability of soil screening criteria for assessing potential health risks is limited. The oral bioaccessibility of Pb in 163 soil samples was attributed to sources through solubility estimation and domain identification. Samples were extracted following the Unified BARGE Method. Urban, mineralisation, peat and granite domains accounted for elevated Pb concentrations compared to rural samples. High Pb solubility explained moderate-high gastric (G) bioaccessible fractions throughout the study area. Higher maximum G concentrations were measured in urban (97.6 mg kg(-1)) and mineralisation (199.8 mg kg(-1)) domains. Higher average G concentrations occurred in mineralisation (36.4 mg kg(-1)) and granite (36.0 mg kg(-1)) domains. Findings suggest diffuse anthropogenic and widespread geogenic contamination could be capable of presenting health risks, having implications for land management decisions in jurisdictions where guidance advises these forms of pollution should not be regarded as contaminated land.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Poluição Ambiental/estatística & dados numéricos , Chumbo/análise , Poluentes do Solo/análise , Medição de Risco , Solo/química
6.
Environ Geochem Health ; 36(5): 953-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24760621

RESUMO

The environmental quality of land can be assessed by calculating relevant threshold values, which differentiate between concentrations of elements resulting from geogenic and diffuse anthropogenic sources and concentrations generated by point sources of elements. A simple process allowing the calculation of these typical threshold values (TTVs) was applied across a region of highly complex geology (Northern Ireland) to six elements of interest; arsenic, chromium, copper, lead, nickel and vanadium. Three methods for identifying domains (areas where a readily identifiable factor can be shown to control the concentration of an element) were used: k-means cluster analysis, boxplots and empirical cumulative distribution functions (ECDF). The ECDF method was most efficient at determining areas of both elevated and reduced concentrations and was used to identify domains in this investigation. Two statistical methods for calculating normal background concentrations (NBCs) and upper limits of geochemical baseline variation (ULBLs), currently used in conjunction with legislative regimes in the UK and Finland respectively, were applied within each domain. The NBC methodology was constructed to run within a specific legislative framework, and its use on this soil geochemical data set was influenced by the presence of skewed distributions and outliers. In contrast, the ULBL methodology was found to calculate more appropriate TTVs that were generally more conservative than the NBCs. TTVs indicate what a "typical" concentration of an element would be within a defined geographical area and should be considered alongside the risk that each of the elements pose in these areas to determine potential risk to receptors.


Assuntos
Poluição Ambiental/estatística & dados numéricos , Substâncias Perigosas/normas , Poluentes do Solo/toxicidade , Testes de Toxicidade/métodos , Arsênio/análise , Arsênio/toxicidade , Monitoramento Ambiental , Geologia , Metais Pesados/análise , Metais Pesados/toxicidade , Modelos Estatísticos , Irlanda do Norte , Medição de Risco/métodos , Poluentes do Solo/normas
7.
Environ Geochem Health ; 35(5): 553-67, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23821222

RESUMO

Potentially toxic elements (PTEs) including nickel and chromium are often present in soils overlying basalt at concentrations above regulatory guidance values due to the presence of these elements in underlying geology. Oral bioaccessibility testing allows the risk posed by PTEs to human health to be assessed; however, bioaccessibility is controlled by factors including mineralogy, particle size, solid-phase speciation and encapsulation. X-ray diffraction was used to characterise the mineralogy of 12 soil samples overlying Palaeogene basalt lavas in Northern Ireland, and non-specific sequential extraction coupled with chemometric analysis was used to determine the distribution of elements amongst soil components in 3 of these samples. The data obtained were related to total concentration and oral bioaccessible concentration to determine whether a relationship exists between the overall concentrations of PTEs, their bioaccessibility and the soils mineralogy and geochemistry. Gastric phase bioaccessible fraction (BAF %) ranged from 0.4 to 5.4 % for chromium in soils overlying basalt and bioaccessible and total chromium concentrations are positively correlated. In contrast, the range of gastric phase BAF for nickel was greater (1.4-43.8 %), while no significant correlation was observed between bioaccessible and total nickel concentrations. However, nickel BAF was inversely correlated with total concentration. Solid-phase fractionation information showed that bioaccessible nickel was associated with calcium carbonate, aluminium oxide, iron oxide and clay-related components, while bioaccessible chromium was associated with clay-related components. This suggests that weathering significantly affects nickel bioaccessibility, but does not have the same effect on the bioaccessibility of chromium.


Assuntos
Cromo/farmacocinética , Exposição Ambiental , Níquel/farmacocinética , Poluentes do Solo/farmacocinética , Solo/química , Oligoelementos/análise , Disponibilidade Biológica , Fracionamento Químico , Cromo/análise , Monitoramento Ambiental , Humanos , Níquel/análise , Irlanda do Norte , Tamanho da Partícula , Medição de Risco , Poluentes do Solo/análise , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA